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Abstract. The scaling behaviour of a superconducting system with another ordering in a 
magnetic field is considered by the renormalisation-group approach. Exact recursion 
relations up to the order O(E)  are obtained and analysed. The usual bicritical and 
tetracritical fixed points do not appear for physically interesting values of the symmetry 
indices of the order parameters. This phenomenon is associated with the strong influence of 
the vector-potential fluctuations on the critical behaviour of the system. 

1. Introduction 

The critical behaviour of systems with two interacting order parameters in the frame- 
work of the generalised Ginzburg-Landau-Wilson models has been studied intensively 
in the mean-field approximation (e.g. Imry 1975) and by the renormalisation-group 
(RG) approach (e.g. Kosterlitz et a1 1976, Lyuksyutov et a1 1975, Gorodetsky and 
Zaprudsky 1975; see also Aharony 1976). 

Systems with a fluctuating order parameter coupled to a gauge field, namely a 
superconductor in a magnetic field (Halperin et a1 1974) and the transition between 
nematic and smectic-A liquid crystal mesophases (Halperin and Lubensky 1974; see 
also Chen eta1 1978) have also been considered. The fluctuations of the gauge field (the 
vector potential of the magnetic field and the direction vector in the liquid crystal) 
change the universality at the transition point to (i) a new Halperin-Lubensky-Ma- 
(HLM) type second-order phase transition for n > n,  = 365-9 and (ii) a ‘weak’ first- 
order phase transition for n < a ,  (see Halperin et a1 1974), where n is the symmetry 
index of the order parameter. 

Recently, the RG approach has been applied by Grewe and Schuh (1979) to the 
problem of co-existence of superconductivity and ferromagnetism in a magnetic field, 
using the free energy functional proposed by Blount and Varma (1979). In the vicinity 
of the ferromagnetic-superconducting phase boundary, the critical fluctuations of the 
magnetic ordering are absorbed into the fluctuations of the vector potential. Thus one 
obtains a quantitative modification of the HLM recursion relations. This result is due to 
the fact that the magnetic field is conjugated to the magnetisation. Hence a term linear 
in the magnetic order parameter appears to be relevant for the result of the RG 
treatment. 

In this paper we apply the RG approach (Wilson and Kogut 1974) to systems in a 
magnetic field which contain two interacting order parameters, namely a superconduc- 
ting and another (non-magnetic) one. Systems with two such order parameters are, for 
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instance, a superconductor with a structural distortion associated with doubling of the 
lattice periodicity (Mattis and Langer 1970, Brankov and Tonchev 1976) or a two-band 
semi-metal with both exitonic and superconducting phase transitions (Rusinov et a1 
1973, Kopayev and Molotkov 1979). 

2. The model 

We start from a free energy functional of the form 

9{*, 4, A } = - j  dx{~lrlr(X)I2+C*l(V-i4oA(x))~(x)l2 

where +(x) is the superconducting order parameter, A(x) is the vector potential and 
+(x) is the other (non-magnetic) order parameter. As usual, a = a ' (T-  T,)/T,, r = 
r f (  T - T6)/  T,, p is the magnetic permeability of the system, qo = 2e is twice the electron 
charge and b*, b,, c, y, and y, are assumed to be analytic functions of the temperature 
(including the critical points T* and T,, T, = T+). Here F, = c = ke = 1. The dimension 
of the space is d = 4 - E .  The Coulomb gauge div A(x) = 0 is assumed. There are 
several characteristic lengths in model (l), but the quantitative results of the RG 

treatment do not change if we use a common cut-off for the short-length fluctuations of 
the fields U = $, 4, A. 

In momentum space we shall work, for instance, with the dimensionless wavevectors 
q = q/qc (qc is the momentum cut-off). After some simple transformations of the fields, 
the free energy (1) in the momentum-space representation is 
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In (3)-(8) R is a dimensionless volume R = Vq,d and 

r, = a/y*q: r+ = rlY+q,2 

523 

The order parameters $ ( q )  and 4(q) are generalised to a (n/2)-component complex 
field and to a m-component real field, respectively. The vector potential A(q)  is a 
d-dimensional vector. The suffixes (Y, N and i denote the components of the cor- 
responding fields. The Feynman graph rules for model (2) are standard. The free 
correlation functions 

are 

and 

3. The renormalisation-group transformation 

Exact recursion relations to order O ( E )  for the free energy (2) are obtained through a 
straightforward application of the RG approach (Wilson and Kogut 1974). We over- 
come some complications caused by the inconsistency between the RG procedure and 
the requirement that the model be gauge invariant using the method proposed by 
Halperin et a1 (1974). The partial trace of the probability distribution exp{fl, taken 
over the high-momentum (exp(-s) < q < 1, 0 < s < CO) degrees of freedom (+a (q ) ,  is 
calculated to first order in the vertex constants for the parameters r, and r,, and to 
second order for the vertex constants uo, v0,  wo, qo and q;. The contributions to the 
q-dependent terms in the correlation functions G,,, and Ga are also accounted for to 
second order in the perturbation expansion. Note that the actual small parameters 
appear to be q;, uo, uo and wo. They are assumed to be of order E = 4-d. Then, one 
must check the perturbation expansion up to fourth order because of the term %2 

(equation (4)) linear in the effective charge qo. This yields the result that only 
contributions to second order in the perturbation expansion are relevant (for details of 
the calculations see Chen et a1 (1978) and Grewe and Schuh (1979)). The RG procedure 
is accomplished by the rescaling 4 = q’ exp(-s) and d ( q f )  = exp[s(l -b-/u)]m(q), where 
vw are the anomalous dimensions of the fields m = 9, 4, A. The recursion relations to 
order O ( E )  corresponding to the free energy (1) are 
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where 

Recursion relations (9)-(16) are a direct generalisation of those for two coupled fields 
(Kosterlitz et a1 1976) and those for a superconductor in a magnetic field (Halperin et a1 
1974). Up to order O ( E )  we have the anomalous dimensions q,, q+ = 0. 

< E )  or to qg = 0 
(if TA > E )  at the fixed point. The first case does not give any finite fixed points. In the 
case qg = 0, the free energy differs from the original one (2) because vertices of type .F2 
and 5F3 would be absent in the fixed-point free energy. 

The assumption T A  # E in equation (15) would lead to q; = 00 (if 

Denoting t = q:p/12m, we obtain for q,,, and qA (see (14) and (16)) 

q* = -18Et" (17) 

qA = net*. (18) 

With the anomalous dimensions T A ,  q+ and qd, = 0 we can study the recursion relations 
in a reduced parameter space p = (r9, r,, U ,  U, w, t ) ,  where 

U = U 0 / 8 E  v = uo/4E w = wo/8E (C = 8x2e) .  

Then we obtain from (9)-(16): 

r b  = exp(2s)(l+ 18est)[rG +4(n +2)Ef(s, rG)u +4mCf(s, rG)w + 18Cf(s, O ) t ]  (19) 

rk =exp(2s)[r+ +4(m +2)Cf(s, r,)v +4nCf(s, rG)w] (20) 

U' = exp(w)( 1 + 36~s t ) [  U - 4( n + 8)Esu2 - 4mww - 27est2] (21) 

v '  = exp(w)[v - 4(m + ~ ) E S V *  - 4nww2] (22) 

w' = exp(w)( l+  1 8 ~ s t ) [ w  - 16esw2-4(n + 2 ) ~ s u w  -4(m + 2 ) ~ s v w ]  (23) 

t' = exp(es)t(l -met).  (24) 

4. Analysis of the fixed points 

From (24) one obtains two types of fixed points p" = ( r &  . . .) corresponding to t" = 0 
and t* = l / n .  In both cases the fixed-point values U * ,  U* and w* are (see (21)-(23)) 

(1 + 36t")u" = 4(n + 8 ) ~ * ~ + 4 m w * ~ +  27t*2 (25) 

v* =4(m + 8 ) ~ * ~ + 4 n w * ~  (26) 

(1+18t*)w*= 1 6 w * 2 + 4 ( n + 2 ) u * w * + 4 ( m + 2 ) v * w * .  (27) 
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If the values U * ,  u* and w* are known, r$  and r f  are to be 

r$ = -2~[(n+2)u*+mw*+'$t*]  

r f  = - 2 ~ [ ( m  +2)v*+nw*] .  

The eigenvalues exp{sybL} (p,i = r+, . . ,) of the linearised transformation matrix for the 
relevant variables which determine the scaling behaviour of the system are (see the 
appendix) 

y *  = -E  

yt = E 

for t* = l / n  

for t* = 0 

and 

Yr*,r+ - - 2 + E (9t* - 2( n + 2)u * - 2( m + 2 ) u  * 
i~ {[9t* + 2 ( m  + 2)u* - 2(n + 2)u *I2 + 16mn w * 2 } 1 / 2 ) .  (30)  

The eigenvalues y u ,  y o  and y w  could be found from a third-order algebraic equation (see 
equations (A.7) and (A.8)). Using these values of y u ,  y u  and y w  one might establish the 
stability of every fixed point and the corrections to the critical behaviours. 

We shall comment briefly on the following cases. 

4.1. t" = O  

From (17)  and (18)  we have T,,, = vA = 0. This is the case 42 = 0 discussed above. The 
fixed points (25)-(27) and the critical exponents (29)-(30) (despite the presence of the 
parameter t in the recursion relations) up to order O ( E )  are the same as those described 
by Kosterlitz et a1 (1976).  According to (29), in a magnetic field the fixed points of a 
system with two ordering parameters are unstable with respect to perturbations of the 
magnetic field around the value H = 0. 

4.2. t * = l / n  

4.2.1. Decoupled behaviour: w*  = 0. In this case for n > nc = 365.9 one always obtains 
an unstable Gaussian-HLM fixed point and a Heisenberg-HLM fixed point for m # -8 
and n > n,. The last one is stable (with respect to w-type fluctuations) if n and m satisfy 
the condition 

216 n + 2  
32 - n m  -2n  - 2 m  + i ( m  + 8 )  n +2+------(n2 - 360n -2160)1i2) + O ( E )  < O .  

n n 
(31)  

( 
In the particular case when in the original model u o  = uo, the Gaussian-HLM fixed point 
vanishes, whereas the Heisenberg-HLM fixed point is possible only if 

1 0 8 ( m + 8 ) 2 - n ( n  + 3 6 ) ( m  + 8 ) + n 2 ( n  + 8 ) = 0  n > 365.9. (32)  

The critical exponents for n and m satisfying (32)  are the same for fixed points as 
different as the Heisenberg and HLM ones. 

Here we shall point out the following interesting behaviour of the HLM fixed point 
when the term 27t*2 is removed from equation (25)  for U*. This is possible when the 
symmetry index n is very large. Then, instead of the HLM fixed point, we get a 
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Wilson-like fixed point 

1 + ( 3 6 / n )  
4 ( n  + 8) 

U* = 

9€ 
n 

.- 

and, of course, a ‘Gaussian’ one (r:, U * ,  t* )  = (0 ,  0 ,  l / n ) .  The critical exponents 
corresponding to the fixed point (33) are 

18 n + 2  
y,,=2+€ [ n  n+8(1+?)1  

y u  = - ( 1 + ?) € 

where t* and y t  are given by (29).  For t* = 0 one obtains the usual results (Wilson and 
Kogut 1974). The origin of the term 27t*2 in (25)  is due to the presence of the vertex % 
in (2). For large n its removal breaks down the gauge invariance of model (2) .  

4.2.2. Coupled behaviour w*  # 0. The presence of terms with t* = l / n  in (25)-(27) 
reflects the absence of a ‘bicritical’ fixed-point solution of type U* = v* = w * .  The term 
4 m ~ * ~  in the equation for U* (25)  modifies the critical value of the symmetry index n 
from n, to n:  > n,  for m >0, and to nh < nc for m CO. When m = 0, the system 
(25)-(27) decouples and the solutions for U*, o* and w*  can be determined analytically. 
We have another analytic solution of the system (25)-(27) for n + m. Then, as seen 
from (31), the physical system falls into the range of stability of the decoupled fixed 
points for m > -2. 

5. Discussion 

We have presented the RG recursion relations for a system containing two order 
parameters with an interaction of type Moreover, one of the order parameters 
($), with a charge qo, is coupled to a magnetic field. For such a system, exact recursion 
relations are found which generalise the recursion relations for two important cases: (i) 
for a superconductor in a magnetic field (Halperin et a1 1974) and (ii) for a system with 
two coupled order parameters (Kosterlitz et a1 1976; see also Lyuksyutov et a1 1975). 

Our consideration demonstrates that the RG recursion relations (19)-(24) do not 
possess any stable fixed points for the physically interesting values of the symmetry 
index n. This result provides an additional example of systems where the so called 
‘weak’ first-order phase transitions (Halperin et a1 1974) occur. When one of the order 
parameters ($) is charged, the critical behaviour predicted by Kosterlitz et a1 (1976),  
even in zero magnetic field, must be changed drastically due to fluctuations of the 
magnetic field. The consequences are: (i) there is no tetracritical behaviour, i.e. no 
intersection points of two second-order phase boundary lines on the phase diagram of 
the system exist; (ii) owing to the absence of the bicritical fixed goint, the system has no 
points (on the phase diagram) where a first-order transition line would branch into two 
second-order ones. Thus, if a mixed I/+ phase occurs, it would not be bounded by 
second-order lines only. For instance, possible simple fragments on the phase diagram 
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allowing the presence of the mixed $-c$ phase are shown in figure 1. These features are 
consequences of the fact that the vector potential makes some weak first-order 
transition lines (those connected with the rl, ordering). 

For systems with two order parameters, an effective extension of the superconduc- 
ting critical region is possible due to the influence of the other ordering 4 ( x )  near the 
point T4 = T4 (Hornreich and Schuster 1979). Then one might suggest that the range of 
the weak first-order transition is also extended near this point. 

Stable coupled fixed points should be looked for when n and m satisfy the inverse 
inequality (31). Then one has to find the real roots of an algebraic equation of fourth 
order in w* with coefficients which are polynomials of n and m. In the limiting case 
n + CO the effects of the vector-potential fluctuations are negligible. 

The results mentioned above obtained for the example of superconductivity are 
applicable to every system of two ordering parameters where one of them is coupled to a 
gauge field. 

Figure 1. Possible fragments on the phase diagram of the system. The full curves represent 
the first-order phase transition, the broken ones those of second order. 
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Appendix 

In this appendix the evaluation of the critical exponents is outlined. Let us denote the 
parameters in (19)-(24) by p = {p1,  . . . , 116) = {r4, . . . , t } .  The critical exponents y w ,  
corresponding to a fixed point are obtained from the eigenvalues A&, = exp{sy,} of the 
linearised transformations (19)-(24) 

p l = i . p  (A.1) 
about the fixed point. It is easily seen that the transformation matrix If (A.l) takes the 
form 

A 

L =  
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L33-A 0 L35 
0 L44-A L45 

L53 L54 ~ 5 5 5 - A  

where the elements Lii can be expressed by the fixed-point values (25)-(27). From 
(A.2) it follows that the eigenvalue equation 

det{k - A f }  = 0 

(f is the unit matrix) decouples to three equations 

L66=h (A.3) 

= O .  

(A.4) 

(A.5) 

The matrix elements entering (A.3)-(A.5) are, from the fixed-point values U*, U * ,  w *  
and t*,  

ll1=2+[18t*-4(n +2)u*]e 

/22=2-4(n+2)ev* 

133=~[1+36t*-8(n  + 8 ) u * ]  

144=~[ l -8 (m+8)u*]  

l S 5 =  e[1+ 18t*-32w*-4(n +2)u*-4(m +2)u*] 

166 = E(1-2nt*) 

l l2  = -4me e2'w* 

/35 = -8mew* 

145 = -8new" 

121 = - 4 n ~  e2'w * 
153 = -4(n + ~ ) E w *  

lS4 = -4(m + ~ ) E w *  

where Li, = exp(slii) and L,, = sl,, (for i Z j ) .  Using (A.6) we obtain from (A.3) the 
expression (29) for yt and from (A.4) the expression (30) for yr, and yr+. Equation (A.5) 
yields the values of yu, yu, and yw. We shall write equation (A.5) more explicitly only for 
the interesting coupled case W *  # 0: 

y 3 i - A e y 2 + B ~ 2 y + C ~ 3 = 0  (A.7) 

where 

A = 1 6 ( 4 ~ *  +40* - w*) 

B = 768u*w* +768u*w* +64(n + 8)(m +8)u*u* -64(nm + m + n + 8 ) ~ * ~  

-288(m +8)t*u* + 3 2 ~ * - 3 2 ~ * - 4 8 ~ * - 4 8 v * -  1 (A.8) 

C = 1024(m +8)(n  +8)u*v*w*-256m(m +8)(n  + ~ ) u * w * ~  

- 2 5 6 n ( n + 8 ) ( m + 2 ) ~ * ~ * ~ + 6 4 ( n m + 1 9 m  + n  + 4 4 ) ~ * ~  

- 768[ 1 + 6(m + 8)t*]u* w * - 768u* w * - 16w*. 

To find the coefficients A, B and C, we use the fact that for w # 0, l s5  is simply 
lS5 = - 1 6 ~ "  as follows from (27) and (A.6). In the decoupled case w* = 0 we have 
yu = 133, yu  = 144 and yW = 155.  



Systems with superconducting and other orderings 529 

References 

Aharony A 1976 Phase Transitions and Critical Phenomena vol. 6 ed. C Domb and M S Green (New York: 

Blount E J and Varma C M 1979 Phys. Rev. Lett. 42 1079 
Brankov J G and Tonchev N S 1976 Physica 84A 371 
Chen J H, Lubensky T C and Nelson D R 1978 Phys. Rev. B 17 4274 
Gorodetsky E E and Zaprudsky V M 1975 Zh. Eksp. Teor. Fiz. 69 1013 
Grewe N and Schuh B 1979 Z. Phys. B 36 89 
Halperin B I and Lubensky T C 1974 Solid St. Commun. 14 997 
Halperin B I, Lubensky T C and Ma S 1974 Phys. Rev. Lett. 32 292 
Hornreich R M and Schuster H G 1979 Phys. Lett. 70A 143 
Imry Y 1975 J.  Phys. C: Solid St. Phys. 8 567 
Kopayev Yu V and Molotkov S N 1979 Fiz. Tverd. Tela 21 1195 
Kosterlitz J M, Nelson D R and Fisher M E 1976 Phys. Rev. B 13 412 
Lyuksyutov I F, Pokrovsky V L and Khmelnitsky D E 1975 Z h .  Eksp. Teor. Fiz. 69 1013 
Mattis D C and Langer W D 1970 Phys. Rev. Lett. 25 376 
Rusinov A I, Kat D C and Kopayev Yu V 1973 Zh.  Eksp. Teor. Fiz. 65 1984 
Wilsolr K G and Kogut J 1974 Phys. Rep. 12 77 

Academic) ch 6 


